The transformer-based encoder-decoder framework is becoming popular in scene text recognition, largely because it naturally integrates recognition clues from both visual and semantic domains. However, recent studies show that the two kinds of clues are not always well registered and therefore, feature and character might be misaligned in difficult text (e.
Recently, regression-based methods, which predict parameterized text shapes for text localization, have gained popularity in scene text detection. However, the existing parameterized text shape methods still have limitations in modeling arbitrary-shaped texts due to ignoring the utilization of text-specific shape information.
3D content creation via text-driven stylization has played a fundamental challenge to multimedia and graphics community. Recent advances of cross-modal foundation models (e.g., CLIP) have made this problem feasible. Those approaches commonly leverage CLIP to align the holistic semantics of stylized mesh with the given text prompt.
Multilingual text recognition (MLTR) systems typically focus on a fixed set of languages, which makes it difficult to handle newly added languages or adapt to ever-changing data distribution. In this paper, we propose the Incremental MLTR (IMLTR) task in the context of incremental learning (IL), where different languages are introduced in batches.
Recently, regression-based methods, which predict parameterized text shapes for text localization, have gained popularity in scene text detection. However, the existing parameterized text shape methods still have limitations in modeling arbitrary-shaped texts due to ignoring the utilization of text-specific shape information.
Pathological diagnosis is the gold standard for disease assessment in clinical practice. It is conducted by inspecting the specimen at the microscopical level. Therefore, a very high-resolution pathological image that precisely describes the submicron-scale appearance is essential in the era of digital pathology, which is not easily obtained.
Object detection is an essential computer vision task that possesses extensive application prospects in on-road applications. Copious novel methods have been proposed in this branch recently. However, the majority of them have high computational cost, making them intractable to be deployed on embedded devices.
Scene text recognition (STR) pre-training methods have achieved remarkable progress, primarily relying on synthetic datasets. However, the domain gap between synthetic and real images poses a challenge in acquiring feature representations that align well with images on real scenes, thereby limiting the performance of these methods.